课程安排
教学计划


课程安排
课程示例
专业必修课 | 共18学分 |
圆桌讨论 | 1 |
实践实验 | 3 |
独立项目 | 6 |
实习 I | 2 |
实习 Ⅱ | 3 |
实习 Ⅲ | 3 |
专业选修课 | 共21学分 |
Data Mining and Knowledge Discovery in Data Science | 3 |
Automatic Machine Learning | 3 |
Deep Learning in Data Science | 3 |
Advanced Database Management for Data Science | 3 |
Advanced Machine Learning | 3 |
Parallel Programming for Data Science and Analytics | 3 |
Foundation of Data Science and Analytics | 3 |
Data Science Computing | 3 |
Data Analysis and Privacy Protection in Blockchain | 3 |
Data Exploration and Visualization | 3 |
Spatio-Temporal Data Analysis | 3 |
Introduction to Graph Learning | 3 |
Special Topics | 3 |
Practical Lab Course | 3 |
One other course from Info Hub (Artificial Intelligence, Data Science and Analytics, and Internet of things) | 3 |
独立项目(6 学分) |
|
实习(8 学分) |
|